You may have heard of 3D printing as a machine reminiscent of the Star Trek Replicator according to newscasters and journalists. 3D printers can “print” in plastic, metal, nylon, and over a hundred other materials. It can be used for making nonsensical little models like Yoda, yet it can also print manufacturing prototypes, end user products, engine parts and even human organs using a person’s own cells.
A New Industrial Revolution?
We live in an age that is witness to what many are calling the Third Industrial Revolution. 3D printing, more professionally called additive manufacturing, moves us away from the Henry Ford era mass production line, and will bring us to a new reality of customizable, one-off production.
Need a part for your washing machine? As it is now, you’d order from your repairman who gets it from a distributer, who got it shipped from China, where they mass-produced thousands of them at once, probably injection-molded from a very expensive mold. In the future, the beginning of which is already here now, you will simply 3D print the part. (Think of your local copier shop).
3D printers use a variety of very different types of manufacturing technologies, but they all share one core thing in common: they create a three dimensional object by building it layer by successive layer, until the entire object is complete. It’s much like printing in two dimensions on a sheet of paper, but with an added third dimension: UP. The Z-axis.
Each of these printed layers is a thinly-sliced, horizontal cross-section of the eventual object. Imagine a multi-layer cake, with the baker laying down each layer one at a time until the entire cake is formed. 3D printing is somewhat similar, but just a bit more precise than 3D baking.
It Begins with a Digital File
In the 3D world, a 3D printer needs to have instructions for what to print. The file — a Computer Aided Design (CAD) file — is created with the use of a 3D modeling program, either from scratch or beginning with a 3D model created by a 3D scanner. Either way, the program creates a file that is sent to the 3D printer. Along the way, software slices the design into hundreds, or more likely thousands, of horizontal layers. These layers will be printed one atop the other until the 3D object is done.
The term 3D printing is the common term for the correct manufacturing term of “additive manufacturing.” But 3D printing will remain the term of choice as who really is going to run around saying things like, “I’m going to go additively manufacture a new iPhone case.” No, they are going to “3D print” it. It just sounds so much cooler too, doesn’t it?
There’s no way subtractive manufacturing is going to make something like this in one clean run.
So what the heck is additive manufacturing? Someday soon enough in the future, people will look back and view our current manufacturing processes as we today view something such as blacksmithing. What’s interesting about that last sentence is that much of today’s manufacturing processes are actually very similar to blacksmithing. Both are what’s called “subtractive manufacturing.”
Subtractive manufacturing relies upon the removal of material to create something. The blacksmith hammered away at heated metal to create a product. Today, a CNC machine cuts and drills and otherwise removes material from a larger initial block of material to create a product. It’s inefficient and wasteful. Other manufacturing techniques abound but they all essentially whittle down raw material into a product.
As you’ve already surmised, additive manufacturing creates something by adding material to the object. Some here, some there, and no where it’s not needed. No waste. Very efficient. You’ll read about many types of 3D printers, but no matter the technology involved, it’s additive.
Now, fast 3D printers can be had for tens of thousands of dollars, and end up saving the companies many times that amount in the prototyping process. For example, Nike uses 3D printers to create multi-colored prototypes of shoes. They used to spend thousands of dollars on a prototype and wait weeks for it. Now, the cost is only in the hundreds of dollars, and changes can be made instantly on the computer and the prototype reprinted on the same day.
Some companies are using 3D printers for short run or custom manufacturing, where the printed objects are not prototypes, but the actual end user product. As the speeds of 3D printing go up and the prices come down, look for more and more of this. And expect more availability of personally customized products.
Some print things like jewelry, some print replacement parts for appliances such as their dishwasher, some invent all sorts of original things, some create art, and some make toys for their kids. With the many types of metal, plastic, glass, and other materials available (even gold and silver), just about anything can be printed.
3D Printing is a Game Changer
Instantly printing parts and entire products, anywhere in the world, is a game changer. But it doesn’t stop there. 3D printing will affect almost every aspect of industry and our personal lives.
Medicine will forever be changed as new bioprinters actually print human tissue for both pharmaceutical testing and eventually entire organs and bones.
Architecture and construction are changing as well. Now, 3D-printed models of complex architectural drawings are created quickly and inexpensively, rather than the expensive and time-consuming process of handcrafting models out of cardboard. And experimental, massive 3D printers are printing concrete structures, with the goal of someday creating entire buildings with a 3D printer.
Art is already forever changed. Digital artists are creating magnificent pieces that seem almost impossible to have been made by traditional methods. From sculptures to light fixtures, beautiful objects no longer need to be handcrafted, just designed on a computer.
And there are developments where you least expect them: for example, archeologists can 3D scan priceless and delicate artifacts, and then print copies of them so they can handle them without fear of breakage. Replicas can be easily made and distributed to other research facilities or museums. It has been used to create a full-size reproduction of King Tutankhamun’s mummy and to repair Rodin’s sculpture, The Thinker.
The Future of 3D Printing
This is a disruptive technology of mammoth proportions, with effects on energy use, waste, customization, product availability, art, medicine, construction, the sciences, and of course manufacturing. It will change the world as we know it. Before you know it.